HPFS® Fused Silica KrF Grade

Semiconductor Optics

HPFS® KrF Grade, Corning code 7980, is a high purity synthetic amorphous silicon dioxide manufactured by flame deposition. The noncrystalline, colorless, silica glass combines a very low thermal expansion coefficient with excellent optical qualities and exceptional transmittance in the deep ultraviolet. KrF Grade was developed for 248 nm lithography systems. In order to satisfy the challenging quality requirements of our customers in leading edge applications such as microlithography, Corning is dedicated to continuous improvement. Our investments in research and development, combined with Corning's quality systems, support our technology leadership position and ensure that we meet our customer's requirements on time, every time.

Quality Grade Selection Chart — HPFS® KrF Grade

Corning defines and certifies the quality of HPFS® glass using two criteria: inclusions and homogeneity grade.

Inclusion Class			Homogeneity ^{3,4} ppm			
				Gra	ade	
Class	Total Inclusion ¹ Cross Section [mm ²]	Maximum ² Size [mm]	AA ≤ 0.5	A ≤ 1	C ≤ 2	F ≤ 5
0	≤ 0.03	0.10				
1	≤ 0.10	0.28				
2	≤ 0.25	0.50			•	•

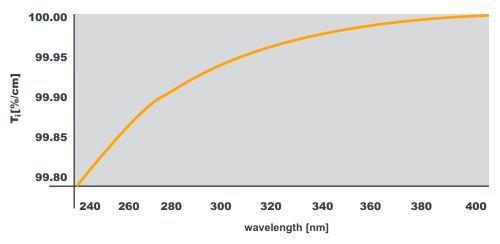
NOTES:

- 1. Defines the sum of the cross section in mm² of inclusions per 100 cm³ of glass. Inclusions with a diameter ≤ 0.10 mm are disregarded.
- 2. Refers to the diameter of the largest single inclusion.
- 3. Index homogeneity: the maximum index variation (relative), measured over the clear aperture of the blank.
- 4. Index homogeneity is certified using an interferometer at 632.8 nm. The numerical homogeneity is reported as the average through the piece thickness. Blanks with a diameter up to 450 mm can be analyzed over the full aperture. Larger parts can be analyzed using multiple overlapping apertures. The minimum thickness for index homogeneity verification is 20 mm.

For thinner parts, the parent piece is certified.

Mechanical and Thermal Properties:

Unless otherwise stated, all values @ 25°C


Elastic (Young's) Modulus	72.7 GPa		
Shear Modulus	31.4 GPa		
Modulus of Rupture, abraded	52.4 MPa		
Bulk Modulus	35.4 GPa		
Poisson's Ratio	0.16		
Density	2.201 g/cm ³		
Knoop Hardness (100 g load)	522 kg/mm ²		
Bulk Modulus Poisson's Ratio Density	35.4 GPa 0.16 2.201 g/cm ³		

	Softening Point		1585°C (10 ^{7.6} poises)
	Annealing Point	1042°C (10 ¹³ poises)	
Strain Point			893°C (10 ^{14.5} poises)
-	Thermal Conductivity	1.30 W/m K	
-	Thermal Diffusivity	0.0075 cm ² /s	
		0.52 ppm/K	5°C-35°C
	Average C.T.E.	0.57 ppm/K	0°C-200°C
		0.48 ppm/K	-100°C-200°C

Chemical Durability and Impurities

Solution		Time	Weight Loss [mg/cm²]	Impurities
5% HCL by weight	@ 95°C	24 h	< 0.010	OH content (by weight): 800-1000 ppm
5% NaOH	@ 95°C	6 h	0.453	Impurities other than OH: ≤ 500 ppb
0.02N NA ₂ CO ₃	@ 95°C	6 h	0.065	
$0.02N H_2SO_4$	@ 95°C	24 h	< 0.010	
Deionized H ₂ O	@ 95°C	24 h	0.015	
10% HF by weight	@ 25°C	20 m	0.230	
10% NH ₄ F*HF by weight	@ 25°C	20 m	0.220	

Internal Transmittance: Code 7980 KrF Grade

HPFS® KrF Grade is certified to meet $T_i \ge 99.8\%/\text{cm}$ @248 nm when measured through a polished, uncoated sample.

A typical internal transmittance curve for HPFS® KrF Grade fused silica is shown here.

Refractive Index and Dispersion

Data in 22°C in 760mm Hg dry nitrogen gas

Wavelength [air]	Refractive Index *2	Thermal Coefficient	Polynomial Dispersion Equation Constants*1		
λ [nm]	n	$\Delta n/\Delta T^{*3}$ (ppm/K)	A0 2.10	04025406	
1128.64 1.448870		9.6	A1 -1.45	76000330 x 10 ⁻⁴	
1064.00	1.449633	9.6		9135390 x 10 ⁻³	
1060.00	1.449681	9.6	A3 8.801830992 x 10 ⁻³		
1013.98 n _t	1.450245	9.6		55237228 x 10 ⁻⁵	
852.11 n _s	1.452469	9.7		31656789 x 10 ⁻⁶	
$\frac{706.52 \text{ n}_{r}}{706.52 \text{ n}_{r}}$	1.455149	9.9	A6 -1.675425449 x 10 ⁻⁸		
656.27 n _C	1.456370	9.9	A7 8.326602461 x 10 ⁻¹⁰		
643.85 n _C	1.456707	10.0	Sellmeier Dispersion Ed	quation Constants *2	
$\frac{632.80 \text{ n}_{\text{He-Ne}}}{632.80 \text{ n}_{\text{He-Ne}}}$	1.457021	10.0	B1 0.68374049400		
	1.458406	10.0	B2 0.42	2032361300	
589.29 n _D			B3 0.58502748000		
587.56 n _d	1.458467	10.1	C1 0.00460352869		
546.07 n _e	1.460082	10.2	C2 0.01339688560		
486.13 nF	1.463132	10.4	C3 64.49327320000		
479.99 n _F ′	1.463509	10.4			
435.83 n _g	1.466701	10.6	Δn/ΔT Dispersion Equa		
404.66 n _h	1.469628	10.8		90590	
365.01 n _i	1.474555	11.2	C1 0.235290		
334.15	1.479785	11.6	C2 -1.318560 x 10-3		
312.57	1.484514	12.0	C3 3.028870 x 10-4		
308.00	1.485663	12.1	Other Optical Properties		
248.30	1.508433	14.2	$\nu_{ m d}$	67.79	
248.00	1.508601	14.2	$\nu_{ m e}$	67.64	
214.44	1.533789	17.0	n _F -n _C	0.006763	
206.20	1.542741	18.1	n _F '-n _{C'}	0.006802	
194.17	1.559012	20.4	Stress Coefficient	35.0 nm/cm MPa	
193.40	1.560208	20.5	Striae	ISO 10110-4 Class	
193.00	1.560841	20.6	D. C.	5/Thickness Direction	
184.89	1.575131	22.7	Birefringence	≤ 1 nm/cm, lower specifications available	
184.89	1.3/3131	<i>LL.1</i>		specifications available	

^{*1} Polynomial Equation: $n^2 = A_0 + A_1 \ \lambda^4 + A_2 \ \lambda^2 + A_3 \ \lambda^{-2} + A_4 \ \lambda^{-4} + A_5 \ \lambda^{-6} + A_6 \ \lambda^{-8} + A^7 \ \lambda^{-10} \ with \ \lambda \ in \ \mu m$ *2 Sellmeier Equation: $n^2 - 1 = B_1 \ \lambda^2/(\lambda^2 - C_1) + B_2 \ \lambda^2/(\lambda^2 - C_2) + B_3 \ \lambda^2/(\lambda^2 - C_3) \ with \ \lambda \ in \ \mu m$ *3 $\Delta n/\Delta T$ Equation (20-25°C) = $C_0 + C_1 \ \lambda^{-2} + C_2 \ \lambda^{-4} + C_3 \ \lambda^{-6} \ with \ \lambda \ in \ \mu m$

Resistance to Laser Damage

Samples of HPFS® KrF Grade are regularly tested for induced absorption at Corning's Metrology Laboratory, Sullivan Park Research Center, to maintain the high standards to which Corning is committed.